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Principal Component Analysis (PCA)

Part III - Derivation
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Constructing a projection
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Projection vector is: a

2
   T a

y a x
a

 

,  the projection of  onto  is:y x a

Problem: project  onto x a
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The projection  of  onto the plane formed

by , , with 0,  is given by:
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Constructing a projection
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Constructing a projection
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coordinate coordinate 
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The projection  of  onto the plane formed

by , , with 0,  is given by:
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Constructing a projection
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Norm measures Norm measures
amount of spread amount of spread 

1 2of Y onto of Y onto 

The projection Y of dataset X onto the plane formed

by , , with 0,  is given by:
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Constructing a projection
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Finding the optimal projection

  
1

Each image is encoded in .

1. Compute  but ask !

2. Project the image in .

N
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N
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y e x e


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





 

Original Image

The larger this projection,  the more features in the

data are encapsulated in the projection e .

Low values  noise  can be discarded
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𝐴 =
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𝑒2 𝑇
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Each image is encoded in .

1. Compute  but ask !

2. Project the image in .
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Original Image

The smaller p, the more compression
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Remove rows of  with smallest 

projections .
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Image compressed
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Finding the optimal projection
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Original Image Image compressed 90%

Original image is encoded in .Nx
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Compressed image is 

,  with 0.1

 contains  lines of 
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Finding the optimal projection
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PCA as constrained-based optimization

1

Find  lines of  such that 

*min
A

p A

A y x 

A ensures minimal reconstruction error 

- keep statistics

- minimal loss of information

Requests that all projection vectors are 

orthonormal.
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Least-square approximation for reconstruction *
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Reconstruction through error minimization
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Generalize to minimizing reconstruction

error for a set of M datapoints
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Reconstruction through error minimization
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Covariance Matrix 

for zero-mean data
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1x
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 x E x

  0E x 

First pre-processing step in PCA: Center the data
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Ensure minimal reconstruction error 

Request that all projection vectors be 

orthonormal.

 

1,  

0,  

i

T
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e i

e e i j

 

  

Optimization with constraints: convex objective function under 

equality constraint  Lagrange method 

PCA via reconstruction through error minimization
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PCA as constrained-based optimization
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      1 1 1 1 1

Constrained-based optimization (solving for one projection)

Minimum of the Lagrangian: , 1
T T

L e e Ce e e   

The solution is an eigenvector of the 

covariance matrix C!

All eigenvectors of the matrix C are orthonormal 

 the p projections are p eigenvectors of C.

Solution to PCA
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How do we choose the optimal p eigenvectors of C?

𝜆 ≥0 1
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1 1Ce e 

1 1Ce e 
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The eigenvalues give a measure of the

variance of the distribution of X on each

projection.

How do we choose the optimal p eigenvectors of C?

 .
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Percentage of the dataset covered by each projection: 
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PCA: Maximize Variance
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under constraint 1.
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The solution is also an eigenvector 

of the Covariance matrix.

The eigenvector is aligned with 

the direction of covariance.
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PCA: Decomposition

1e
1 2,    [  ]TC V V V e e  

Eigendecomposition of C

1 2, :  orthogonale e
2e

1 2   = ,    [  ]TY AX A V V e e 

Project onto eigenvectors
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Y

C YY

C


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Compute Covariance matrix in projected space

It is diagonal

 The projections are

uncorrelated!

Y
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1. All the projections form an orthonormal basis. 

2. The projections of the data onto each axis are uncorrelated. 

3. PCA gives an optimal (in the mean-square sense) linear reduction 

of the dimensionality. 

4. The first PCA projection determines the direction (vector) along 

which the variance of the data is maximal.

Summary: Properties of PCA Projections
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PCA Algorithm

 

 
 

1

1) Substract the mean: -

2) Compute Covariance matrix: 

3) Compute eigenvalues using det 0.

4) Compute eigenvectors using .

5) Choose first p  eigenvectors: ,...
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How much information is lost?
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Original Image Image compressed 90%
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How do we choose the optimal p eigenvectors of C?

22

Image compressed 90%
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