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Constructing a projection

Problem: project x onto a

Projection vector is: a

y, the projection of x onto a is:
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Constructing a projection

The projection y of x onto the plane formed

by(a',a’), with (al)T a2 =0, is given by:
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Constructing a projection

The projection y of x onto the plane formed

by(a',a’), with (al)T a2 =0, is given by:

''''' = a + a
X y 2 2
----- | o7
%f._/ ﬂ_/
coordinate coordinate

|
|
: ofyontoal  of yonto a2
!
|

v

g
v,
‘a
‘e




APPLIED MACHINE LEARNING EPFL

Constructing a projection

The projection y of x onto the plane formed

" by (e',e? ), with (el)T e? =0, is given by:
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Constructing a projection

The projection Y of dataset X onto the plane formed

' by (e*,e?), with (el)T e? =0, is given by:

Y= |(et) -X|:Y,=|(e?) -X| Y:ithrowof Y
orm measures Nﬁnﬁs

amount of spread amount of spread

of Y onto e1 2

of Y ontoe
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Finding the optimal projection

Each image is encoded in x e R".

1. Compute A but ask Ae R™" 1

2. Project the image in y = AX. l(el)T
A= (62)7}

The Iarger th'|s prOJectlon themore features in the

™ data are encapsulated in the projection e'.

L ow values = noise — can be discarded
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Finding the optimal projection

Each image is encoded in x e R". Remove rows of A with smallest

1. Compute A but ask Ae RV 1 projections (€ )T X.
2. Project the image iny = Ax.

—y= iZ::((e‘ )T x)ei,

‘ The smaller p, the more compression

A’T

Original Image Image compressed
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Finding the optimal projection

Original image is encoded in x € R". Compressed image is y € R?
y=AX, withp=0.1N
A, contains p lines of A

Original Image Image compressed 90%
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PCA as constrained-based optimization

A ensures minimal reconstruction error JLsLUCHRLERRe) WARI[¢aRisEl

- keep statistics : 1
. . . Ay*—x
- minimal loss of information mAm H y H

Requests that all projection vectors are
orthonormal. Heiuzl Vi

with<"
(¢') e, =0, Vi=]
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Reconstruction through error minimization

N T
min Z((e) X)e'
ep+1 ..... eN i=p+1

Since all projections are orthogonal (e‘ )T el =0, i# ]

N .
= min Z((e) X)e = min_ Z H
eP .. eN [li=p+1 eP . eNi- p+1
:e‘(ei)Tx
N T ' T’
= min 2 ((¢) ') ((e') xe'j
eP . eNi=p+l
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Reconstruction through error minimization

Generalize to minimizing reconstruction

error for a set of M datapoints

eb+l i=p+1 j=1

min_ 1 > i((e‘ ) xe') () xe)

cPrL

L

Covariance Matrix
for zero-mean data

C:iXXT
M
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First pre-processing step in PCA: Center the data

i e
DTS L e
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PCA as constrained-based optimization

Ensure minimal reconstruction error _ i i\ i
= min 2. (e') Ce

ePtl  aNj=pt1

Request that all projection vectors be He‘ H =1 Vi
orthonormal.

(e‘)T e, =0, Vi)

Optimization with constraints: convex objective function under

equality constraint - Lagrange method
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Solution to PCA

Constrained-based optimization (solving for one projection)

Minimum of the Lagrangian: L(el,/I) = (el)T Ce' —ﬂb((e1 )T e’ —1)

oL (e, 1) 220
o - Ce'—1e' =0
— Ce! = 16t The solution is an eigenvector of the
covariance matrix C!

All eigenvectors of the matrix C are orthonormal
=» the p projections are p eigenvectors of C.

How do we choose the optimal p eigenvectors of C?
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How do we choose the optimal p eigenvectors of C?

The eigenvalues give a measure of the
variance of the distribution of X on each
projection.
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PCA: Maximize Variance

T .
X, argmax (e’) Ce’
jel,...p
ol under constraint [le’] =1.
* Jea4 < Ce! %/1}"
© /
[ ]
Y o The solution is also an eigenvector
o /0, X, of the Covariance matrix.
o /

.y C{ var (x,) COV(XZ,Xl)}

cov(x,X,)  var(x,)

The eigenvector is aligned with

the direction of covariance.
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PCA: Decomposition

X, Eigendecomposition of C
C=VAV', V=[e e7]

e', e*: orthogonal

Project onto eigenvectors

Y=AX A=V', V=[e" €]

Compute Covariance matrix in projected space

Y
e o o v C,=YY' It is diagonal
. . o ° 5 - The projections are
* * . =Gy =A uncorrelated!
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Summary: Properties of PCA Projections

1. All the projections form an orthonormal basis.
2. The projections of the data onto each axis are uncorrelated.

3. PCA gives an optimal (in the mean-square sense) linear reduction
of the dimensionality.

4. The first PCA projection determines the direction (vector) along
which the variance of the data is maximal.
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PCA Algorithm

Algorithm:
1) Substract the mean: x —> x- E{X}

2) Compute Covariance matrix: C = E{XX" |
3) Compute eigenvalues using det(C — A1) =0.

4) Compute eigenvectors using Ce' = Ae'.
5) Choose first p< N eigenvectors: e*,...e" with 4, > 4, >..4

6) Project data onto new basis: Y = A X, A =/ ..

20



cPrL

o
<
Z
o
<C
w
—
L
<
T
o
<
p=
)
L
-l
o
o
<

How much information is lost?

Image compressed 90%

Original Image
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cPrL

How do we choose the optimal p eigenvectors of C?

i

construction error

re

(normalized)

el:

40930140.00

2: 21716786.00
: 15635739.00
: 274372050
¥ 24TT242.75

1850678.62
1554110.50

Coemp#: EigenValue Cumulative

41 .6%

63.7%

79.6%
BS.4%
B7.9%
B9.8%
91.4%

el10:
ell:
el:
el3:
eld:
el5:
elt:
el’:

el18:

o046 .2 '.!x 5!:»

1199922.38
106788012
914218.25
73261900
&1 7448.25
2539688.00
227959.38
48361 2.56
43220247

4211 36.31

94 1%
953.25%
96.1%
96.9%
97.5%
98.1%
98.6%
99.1%
99.6%

100,0%

eigen vectors
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