

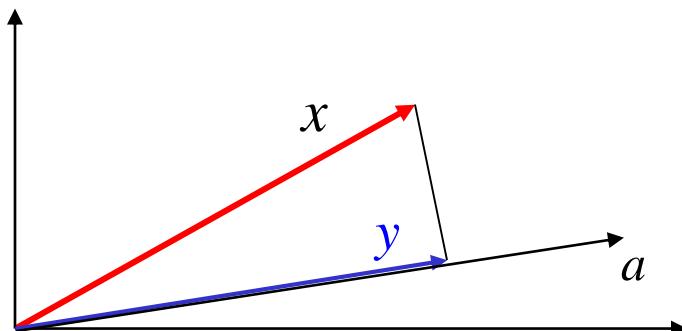
APPLIED MACHINE LEARNING

Principal Component Analysis (PCA)

Part III - Derivation

Constructing a projection

Problem: project x onto a



Projection vector is: a

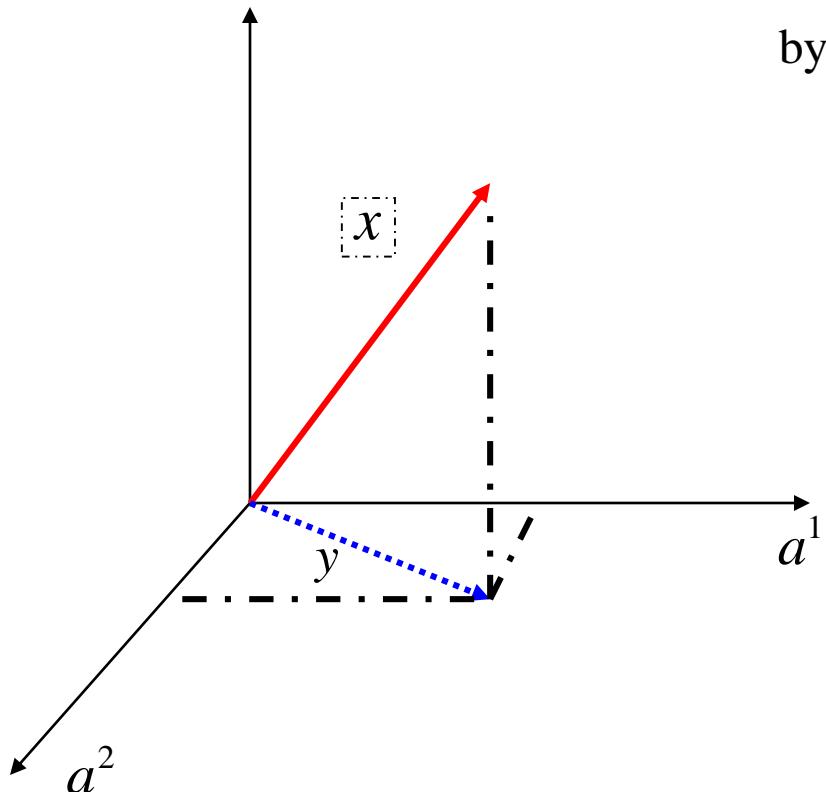
y , the projection of x onto a is:

$$y = a^T \cdot x \frac{a}{\|a\|^2}$$

Constructing a projection

The projection y of x onto the plane formed by (a^1, a^2) , with $(a^1)^T a^2 = 0$, is given by:

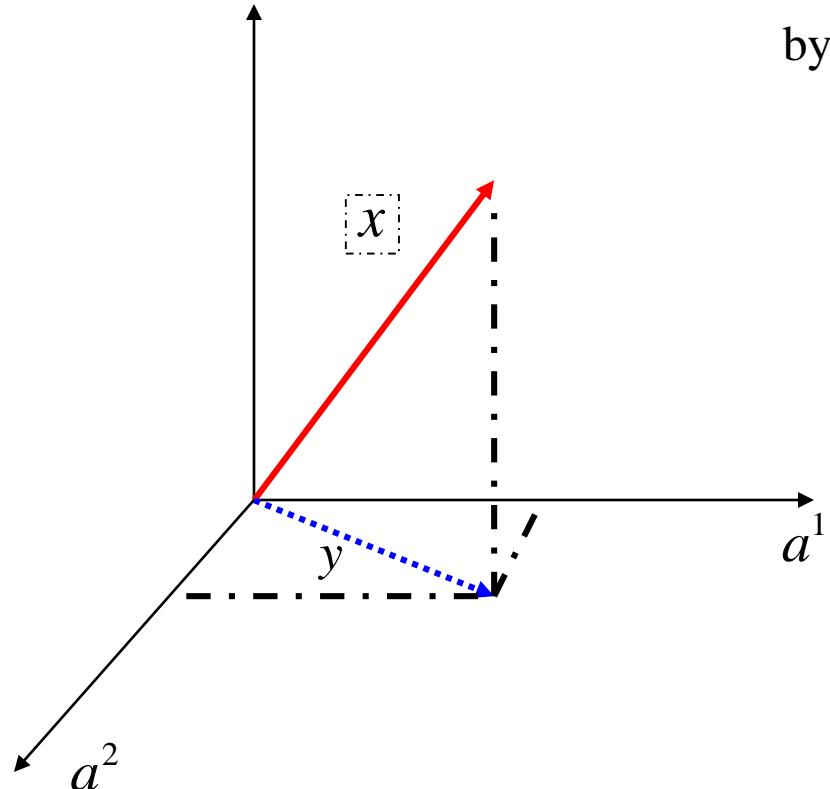
$$y = \underbrace{\frac{(a^1)^T \cdot x}{\|a^1\|^2} a^1}_{\text{coordinate of } y \text{ onto } a^1} + \underbrace{\frac{(a^2)^T \cdot x}{\|a^2\|^2} a^2}_{\text{coordinate of } y \text{ onto } a^2}$$



Constructing a projection

The projection y of x onto the plane formed by (a^1, a^2) , with $(a^1)^T a^2 = 0$, is given by:

$$y = \underbrace{\frac{(a^1)^T \cdot x}{\|a^1\|^2} a^1}_{\text{coordinate of } y \text{ onto } a^1} + \underbrace{\frac{(a^2)^T \cdot x}{\|a^2\|^2} a^2}_{\text{coordinate of } y \text{ onto } a^2}$$



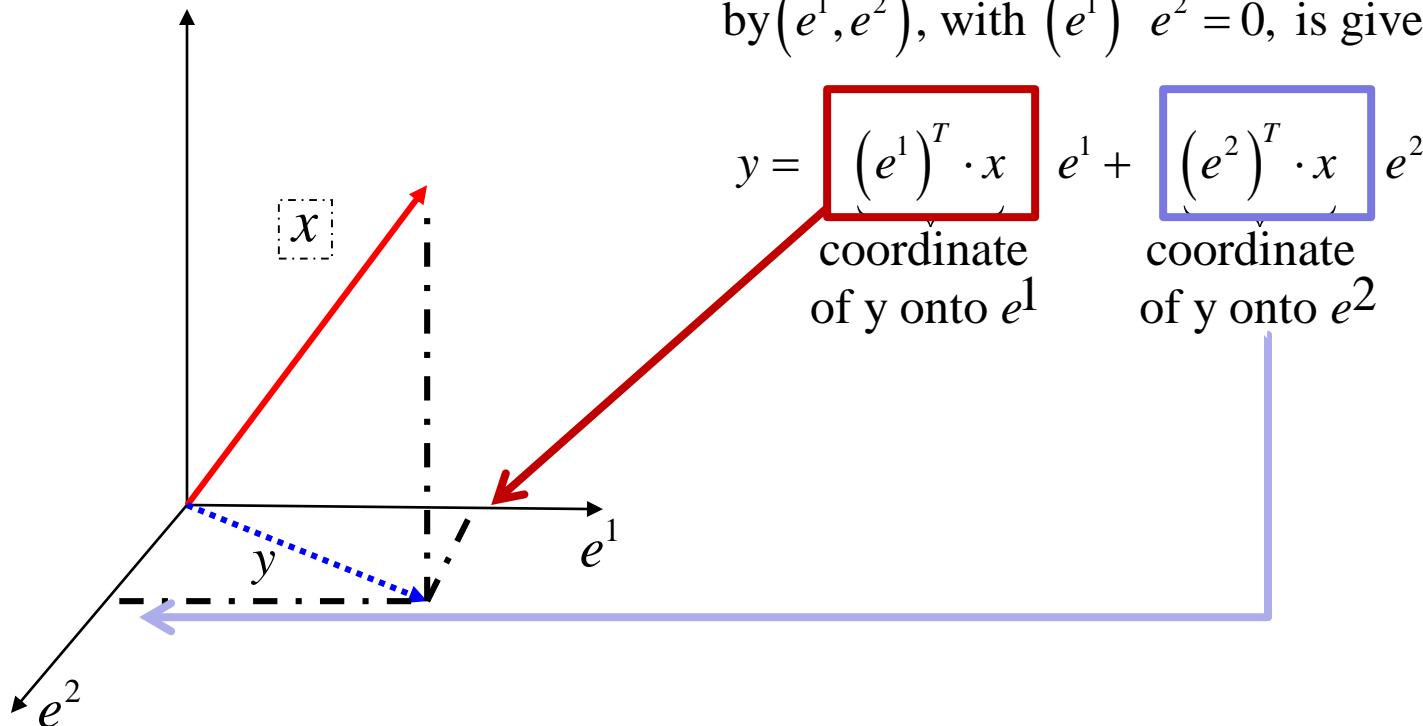
Normalize the projection vectors

$$e^i = \frac{a^i}{\|a^i\|}, i = 1, 2$$

Constructing a projection

The projection y of x onto the plane formed

by (e^1, e^2) , with $(e^1)^T e^2 = 0$, is given by:



Constructing a projection

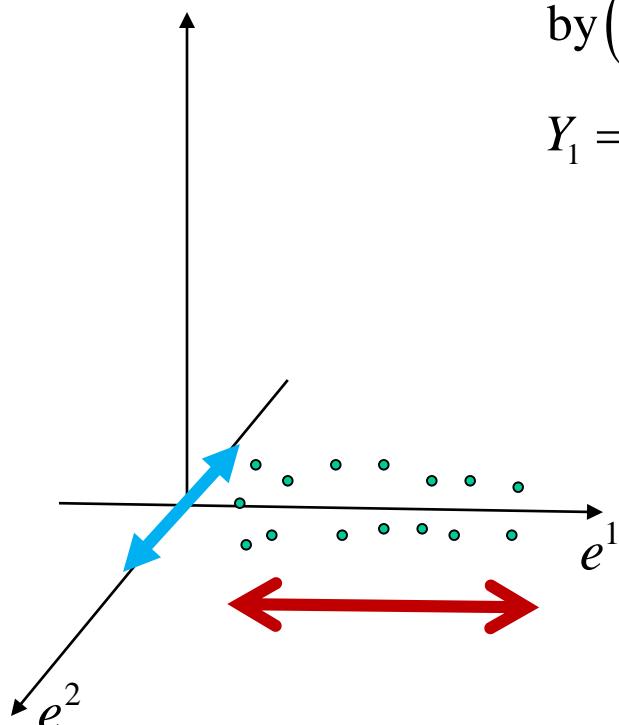
The projection Y of dataset X onto the plane formed

by (e^1, e^2) , with $(e^1)^T e^2 = 0$, is given by:

$$Y_1 = \underbrace{\left(e^1 \right)^T \cdot X}_{\text{Norm measures amount of spread}} ; \quad Y_2$$

$$= \underbrace{\left(e^2 \right)^T \cdot X}_{\substack{\text{Norm measures} \\ \text{amount of spread} \\ \text{of } Y \text{ onto } e^2}}$$

Y_i : i-th row of Y



Finding the optimal projection

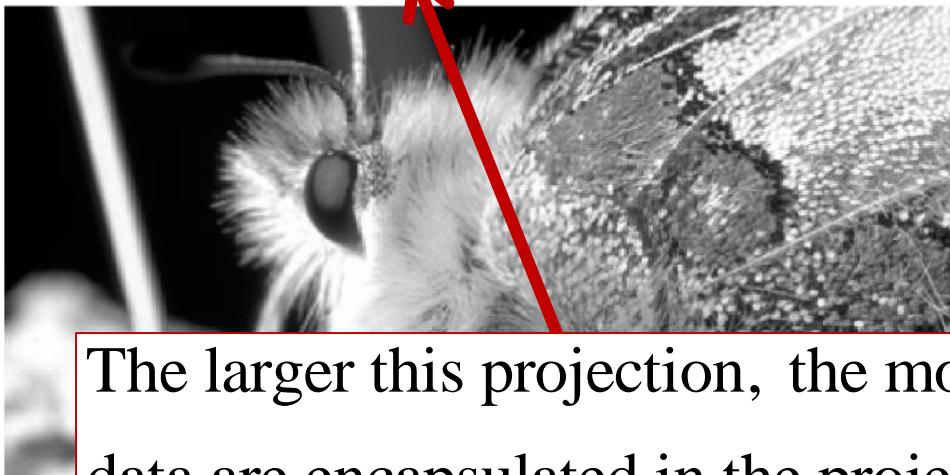
Each image is encoded in $x \in \mathbb{R}^N$.

1. Compute A but ask $A \in \mathbb{R}^{N \times N}$!

2. Project the image in $y = Ax$.

$$\Rightarrow y = \sum_{i=1}^N \left(\left(e^i \right)^T x \right) e^i$$

$$A = \begin{bmatrix} (e^1)^T \\ (e^2)^T \\ \vdots \end{bmatrix}$$



The larger this projection, the more features in the data are encapsulated in the projection e^i .

Low values = noise \rightarrow can be discarded

Finding the optimal projection

Each image is encoded in $x \in \mathbb{R}^N$.

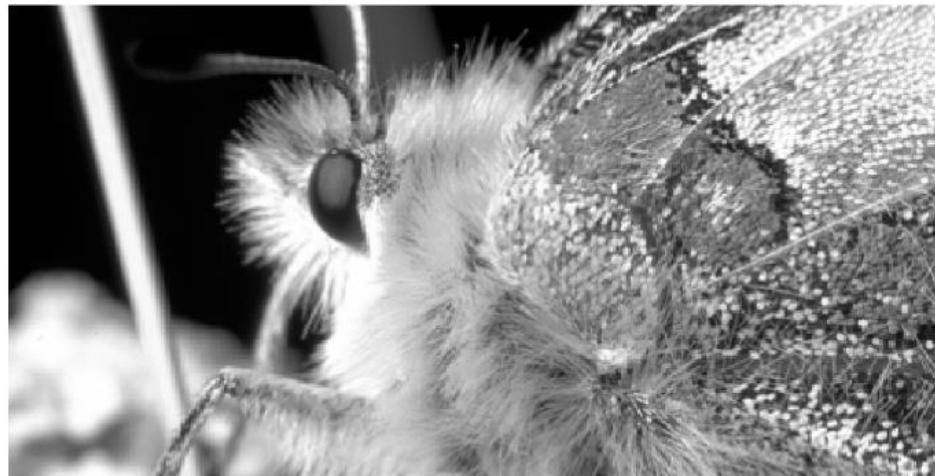
1. Compute A but ask $A \in \mathbb{R}^{N \times N}$!
2. Project the image in $y = Ax$.

$$\Rightarrow y = \sum_{i=1}^N \left((e^i)^T x \right) e^i$$

Remove rows of A with smallest projections $(e^i)^T x$.

$$\Rightarrow y = \sum_{i=1}^p \left((e^i)^T x \right) e^i, \quad p < N.$$

The smaller p , the more compression



Original Image

Image compressed

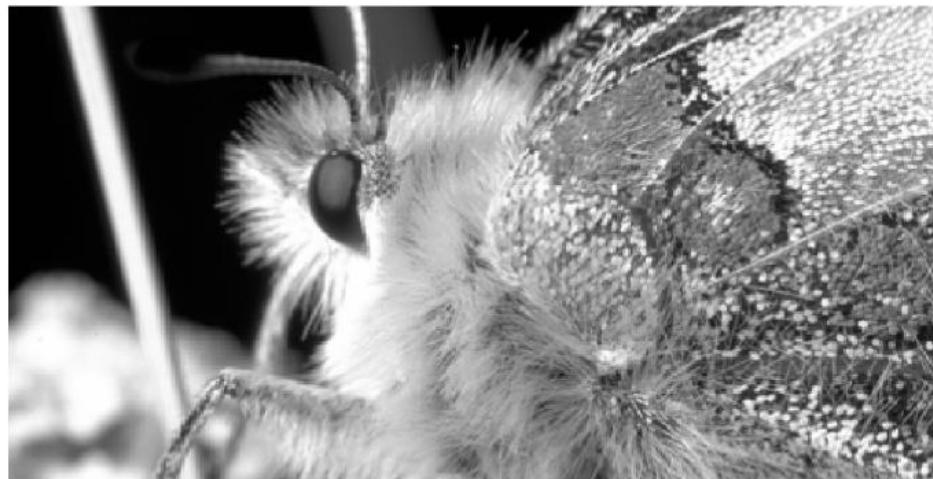
Finding the optimal projection

Original image is encoded in $x \in \mathbb{R}^N$.

Compressed image is $y \in \mathbb{R}^p$

$$y = A_p x, \text{ with } p = 0.1N$$

A_p contains p lines of A



Original Image

Image compressed 90%

PCA as constrained-based optimization

A ensures minimal reconstruction error

- keep statistics
- minimal loss of information

Find p lines of A such that

$$\min_A \|A^{-1}y^* - x\|$$

Least-square approximation for reconstruction $y^* = \begin{bmatrix} y_{1:p} \\ 0_{N-p} \end{bmatrix}$

Requests that all projection vectors are orthonormal.

$$A = \begin{bmatrix} (e^1)^T \\ (e^2)^T \\ \vdots \\ \vdots \end{bmatrix} \quad \text{with} \quad \begin{cases} \|e^i\| = 1, \quad \forall i \\ (e^i)^T e_j = 0, \quad \forall i \neq j \end{cases}$$

Reconstruction through error minimization

$$\min_{e^{p+1}, \dots, e^N} \left\| \sum_{i=p+1}^N \left((e^i)^T x \right) e^i \right\|$$

Since all projections are orthogonal $(e^i)^T e^j = 0, i \neq j$

$$\begin{aligned}
 & \Rightarrow \min_{e^{p+1}, \dots, e^N} \left\| \sum_{i=p+1}^N \left((e^i)^T x \right) e^i \right\| = \min_{e^{p+1}, \dots, e^N} \sum_{i=p+1}^N \left\| \left((e^i)^T x \right) e^i \right\| \\
 & = \min_{e^{p+1}, \dots, e^N} \sum_{i=p+1}^N \left((e^i)^T x e^i \right)^T \overbrace{\left((e^i)^T x e^i \right)}^{=1} \\
 & = \min_{e^{p+1}, \dots, e^N} \sum_{i=p+1}^N \left((e^i)^T x \right) \underbrace{\left(e^i \right)^T e^i}_{=1} \left(x^T e^i \right) \\
 & = \boxed{\min_{e^{p+1}, \dots, e^N} \sum_{i=p+1}^N \left((e^i)^T x \right) x^T e^i}
 \end{aligned}$$

Reconstruction through error minimization

Generalize to minimizing reconstruction error for a set of M datapoints

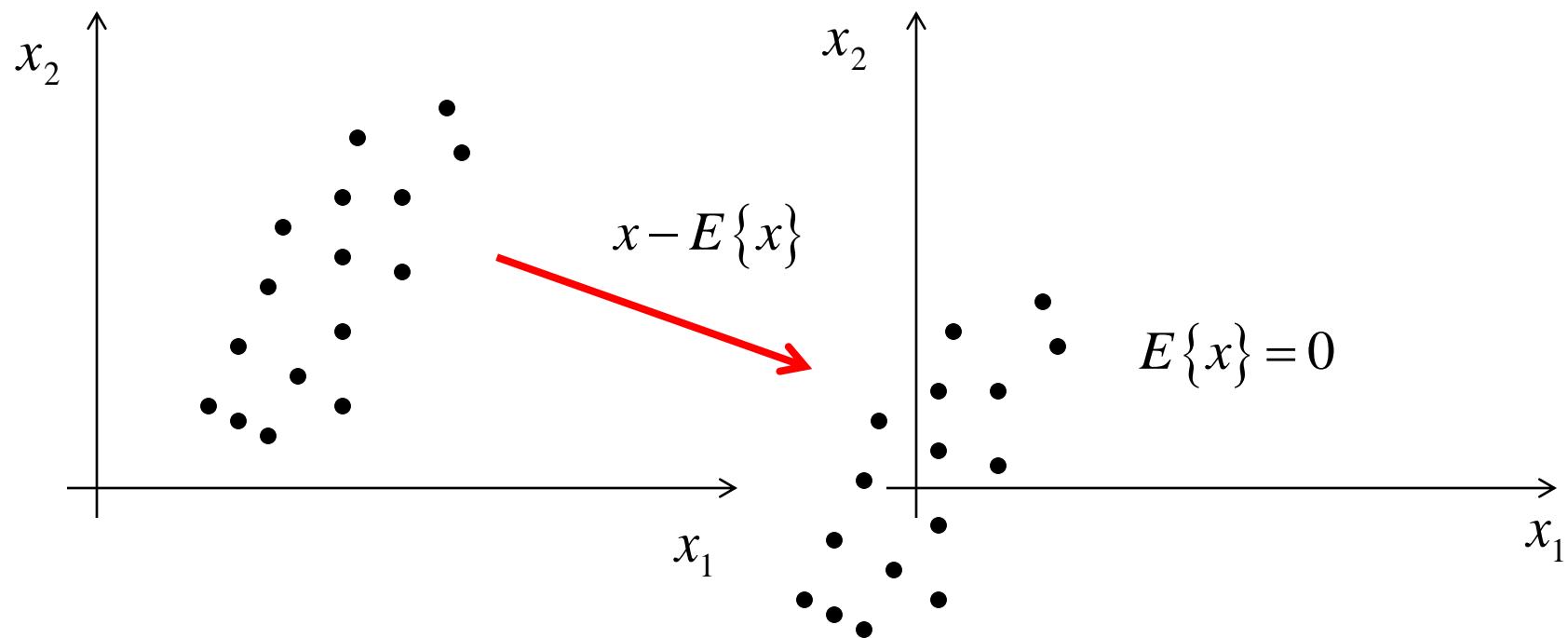
$$\min_{e^{p+1}, \dots, e^N} \frac{1}{M} \sum_{i=p+1}^N \sum_{j=1}^M \left(\left(e^i \right)^T x^j e^i \right)^T \left(\left(e^i \right)^T x^j e^i \right)$$

$$= \min_{e^{p+1}, \dots, e^N} \sum_{i=p+1}^N \left(e^i \right)^T \left(\frac{1}{M} \sum_{j=1}^M x^j \left(x^j \right)^T \right) e^i$$

Covariance Matrix
for zero-mean data

$$C = \frac{1}{M} X X^T$$

First pre-processing step in PCA: Center the data



PCA as constrained-based optimization

Ensure minimal reconstruction error

$$= \min_{e^{p+1}, \dots, e^N} \sum_{i=p+1}^N (e^i)^T C e^i$$

Request that all projection vectors be orthonormal.

$$\|e^i\| = 1, \quad \forall i$$

$$(e^i)^T e_j = 0, \quad \forall i \neq j$$

Optimization with constraints: convex objective function under equality constraint \rightarrow Lagrange method

Solution to PCA

Constrained-based optimization (solving for one projection)

Minimum of the Lagrangian: $L(e^1, \lambda) = (e^1)^T C e^1 - \lambda ((e^1)^T e^1 - 1)$

$$\frac{\partial L(e^1, \lambda)}{\partial e^1} = C e^1 - \lambda e^1 = 0 \quad \lambda \geq 0$$

$$\Rightarrow C e^1 = \lambda e^1$$

The solution is an eigenvector of the covariance matrix C !

All eigenvectors of the matrix C are orthonormal

→ the p projections are p eigenvectors of C .

How do we choose the optimal p eigenvectors of C ?

How do we choose the optimal p eigenvectors of C ?

Percentage of the dataset covered by each projection:

$$(X^T e^i)^T X^T e^i = (e^i)^T X X^T e^i = M (e^i)^T \lambda_i e^i = M \lambda_i.$$

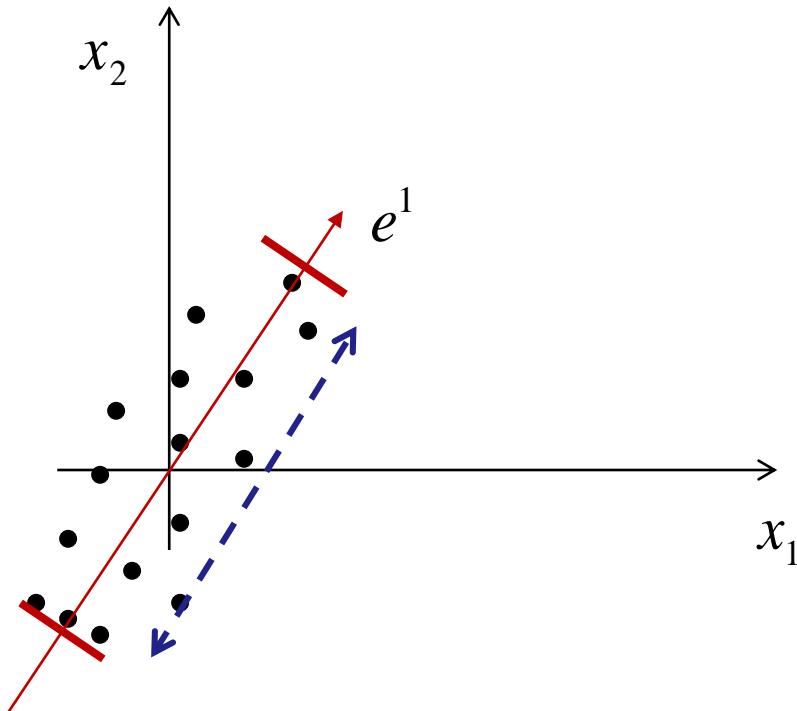
$$\frac{\|X^T e^i\|}{\left\| \sum_j X^T e^j \right\|}$$

$$(e^i)^T e^j = 0 \Rightarrow \left\| \sum_j X^T e^j \right\| = \sum_j \|X^T e^j\|$$

$$\Rightarrow \frac{\|X^T e^i\|}{\left\| \sum_j X^T e^j \right\|} = \frac{\lambda_i}{\sum_j \lambda_j}.$$

The eigenvalues give a measure of the variance of the distribution of X on each projection.

PCA: Maximize Variance



$$\arg \max_{j \in 1, \dots, p} (e^j)^T C e^j$$

under constraint $\|e^j\| = 1$.

$$\Leftrightarrow C e^j = \lambda e^j$$

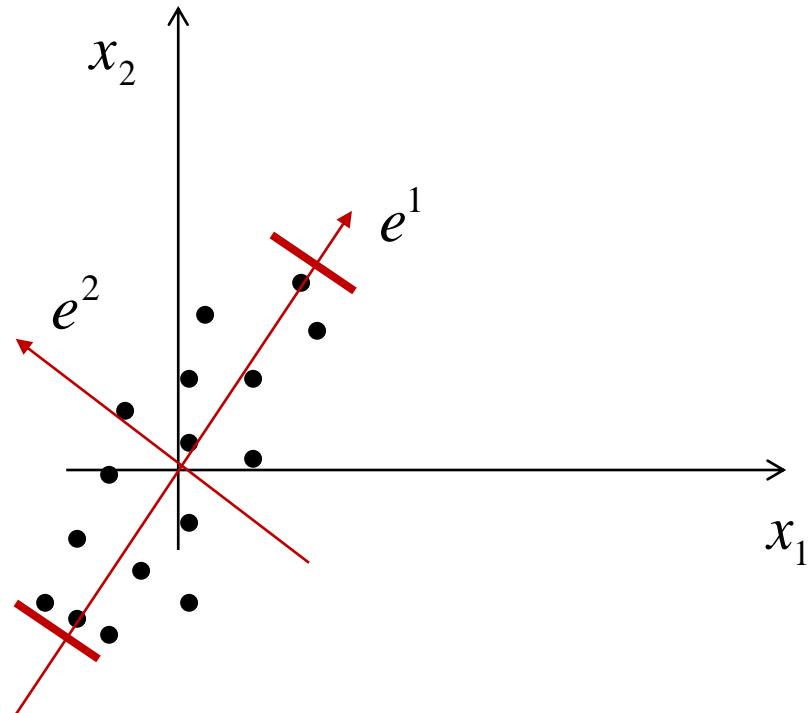
The solution is also an eigenvector of the Covariance matrix.

$$\lambda_1 = (e^1)^T X X^T e^1 \sim \text{var}\left((e^1)^T x\right)$$

The eigenvector is aligned with the direction of covariance.

$$C = \begin{bmatrix} \text{var}(x_1) & \text{cov}(x_2, x_1) \\ \text{cov}(x_1, x_2) & \text{var}(x_2) \end{bmatrix}$$

PCA: Decomposition



Eigendecomposition of C

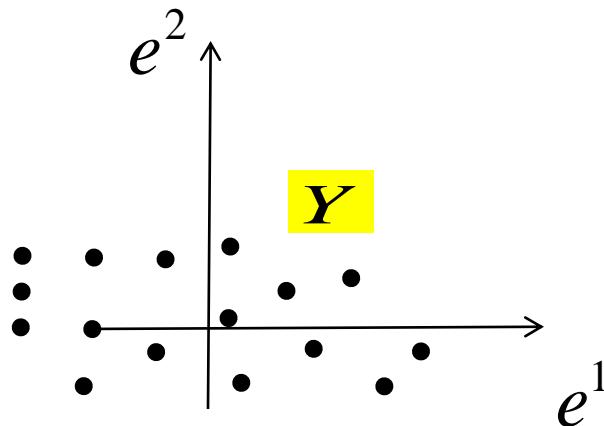
$$C = V \Lambda V^T, \quad V = [e^1 \ e^2]$$

e^1, e^2 : orthogonal

Project onto eigenvectors

$$Y = AX \quad A = V^T, \quad V = [e^1 \ e^2]$$

Compute Covariance matrix in projected space



$$C_Y = YY^T \\ \Rightarrow C_Y = \Lambda$$

It is diagonal
 → The projections are uncorrelated!

Summary: Properties of PCA Projections

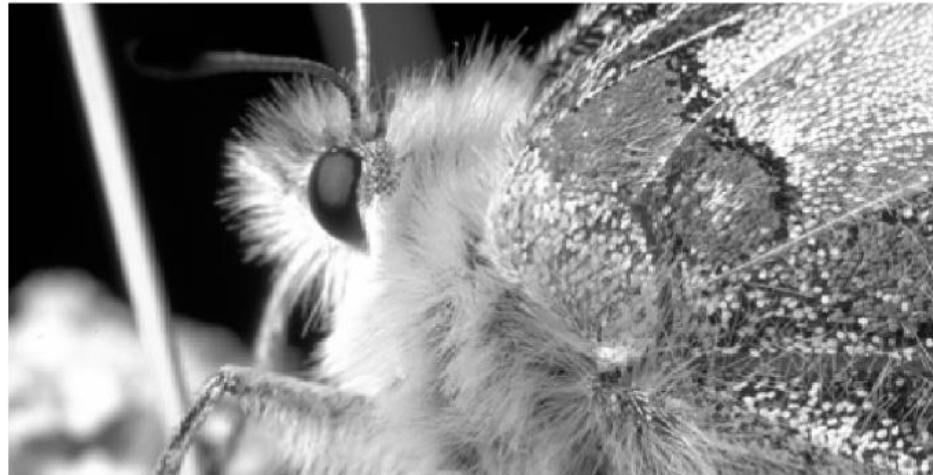
1. All the projections form an **orthonormal** basis.
2. The projections of the data onto each axis are **uncorrelated**.
3. PCA gives an **optimal** (in the mean-square sense) **linear** reduction of the dimensionality.
4. The first PCA projection determines the direction (vector) along which the variance of the data is maximal.

PCA Algorithm

Algorithm:

- 1) Subtract the mean: $x \rightarrow x - E\{X\}$
- 2) Compute Covariance matrix: $C = E\{XX^T\}$
- 3) Compute eigenvalues using $\det(C - \lambda I) = 0$.
- 4) Compute eigenvectors using $Ce^i = \lambda_i e^i$.
- 5) Choose first $p < N$ eigenvectors: e^1, \dots, e^p with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p$
- 6) Project data onto new basis: $Y = A_p X$, $A_p = \begin{pmatrix} e_1^1 & \dots & e_N^1 \\ \dots & \dots & \dots \\ e_1^p & \dots & e_N^p \end{pmatrix}$

How much information is lost?



Original Image

Image compressed 90%

$$\frac{\sum_{j=p+1}^N \lambda_j}{\sum_{i=1}^N \lambda_i} = ?$$

How do we choose the optimal p eigenvectors of C ?

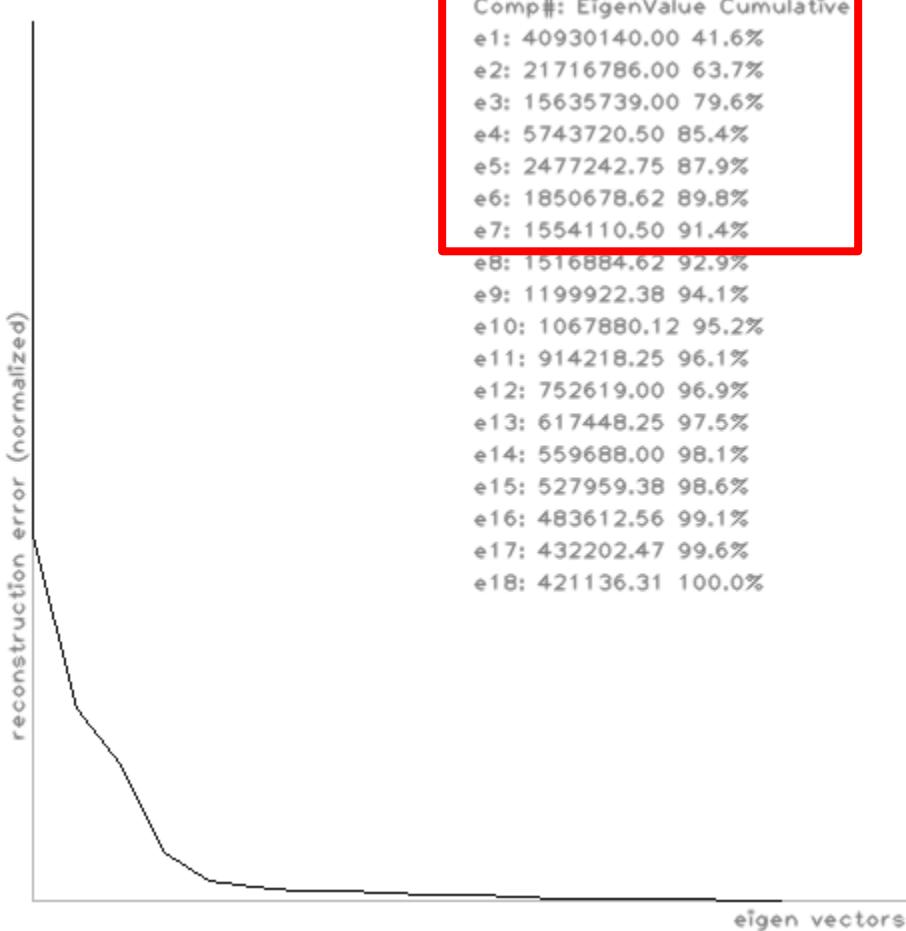


Image compressed 90%

$$\frac{\sum_{j=p+1}^N \lambda_j}{\sum_{i=1}^N \lambda_i} = 0.1$$